Skip to main content

Featured post

Surge Protector Installation Best Approach

Circuit of the week

JOULE THIEF CIRCUIT DESCRIPTION

A “Joule Thief” is a simple voltage booster circuit. It can increase the voltage of a power source by changing the constant low voltage signal into a series of rapid pulses at a higher
voltage. You most commonly see this kind of circuit used to power LEDs with a “dead” battery, but there are many more potential applications for a circuit like this.
In this project, I am going to show you how you can use a Joule Thief to charge batteries with low-voltage power sources. Because the Joule Thief is able to boost the voltage of a signal, you are able to charge a battery with a power source whose output voltage is actually lower than the battery itself. This lets you take advantage of low voltage power sources such as thermoelectric generators, small turbines, and individual solar cells.





This circuit used in this project is a
modified "Joule Thief."
 A Joule Thief is a self-oscillating voltage booster. It takes a steady low voltage signal and converts it into a series of high frequency pulses at a higher voltage.


 Here is how a basic Joule Thief works, step by step:

1. Initially the transistor is off.

2. A small amount of electricity goes
through the resistor and the first coil to the base of the transistor. This partially opens up the collector-emitter channel. Electricity is now able to travel through the second coil and through the collector-emitter channel of the transistor.

3. The increasing amount of electricity
through the second coil generates a
magnetic field that induces a greater
amount of electricity in the first coil.

4. The induced electricity in the first coil
goes into the base of the transistor and
opens up the collector-emitter channel even more. This lets even more electricity travel through the second coil and through the collector-emitter channel of the transistor.

5. Steps 3 and 4 repeat in a feedback loop until the base of the transistor is saturated and the collector-emitter channel is fully open. The electricity traveling through the second coil and through the transistor are now at a maximum. There is a lot of energy
built up in the magnetic field of the second coil.

6. Since the electricity in the second coil is no longer increasing, it stops inducing
electricity in the first coil. This causes less electricity to go into the base of the
transistor.

7. With less electricity going into the base of the transistor, the collector-emitter channel begins to close. This allows less electricity to travel through the second coil.

8. A drop in the amount of electricity in the second coil induces a negative amount of electricity in the first coil. This causes even less electricity to go into the base of the transistor.

9. Steps 7 and 8 repeat in a feedback loop until there is almost no electricity going through the transistor.

10. Part of the energy that was stored in
the magnetic field of the second coil has
drained out. However there is still a lot of
energy stored up. This energy needs to go somewhere. This causes the voltage at the output of the coil to spike.

11. The built up electricity can't go through the transistor, so it has to go through the load (usually an LED). The voltage at the output of the coil builds up until it reaches a voltage where is can go through the load and be dissipated.

12. The built up energy goes through the
load in a big spike. Once the energy is
dissipated, the circuit is effectively reset
and starts the whole process all over again.


It should also be noted that: 
In a typical Joule Thief circuit this process happens 50,000 times per second.

Comments

  1. Please, do you make this circuit yourself? because, when I made it, it doesn't work... anything missing?

    ReplyDelete

Post a Comment

Popular posts from this blog

Nigeria Electrical Engineering Polytechnics Syllabus as specified by UNESCO

As session begins in most Nigerian university, polytechnics and colleges of education. It is thus advisable for students to keep there self updated and alert for urgent tests and exam as might be decided by the lecturer. UNESCO in a brief UNESCO is responsible for coordinating international cooperation in education, science, culture and communication. It strengthens the ties between nations and societies, and mobilizes the wider public so that each child and citizen: • has access to quality education; a basic human right and an indispensable prerequisite for sustainable development; • may grow and live in a cultural environment rich in diversity and dialogue, where heritage serves as a bridge between generations and peoples; • can fully benefit from scientific advances; • and can enjoy full freedom of expression; the basis of democracy, development and human dignity. UNESCO's messages are of increasing importance today, in a globalized world where i

HND Electrical Engineering Syllabus

Hi my people, here is the list of courses you should be expecting when you are thinking of going for HND program in the polytechnics and 300/400 of a university degree. These ebooks comply with all the courses you might encounter during the pursuit of your bachelor's degree certificate and will be efficient and useful after the completion of your degree probably for advance and practical level. Download to view the course outline here - HND Electrical Engineering Course Outline  1. MTH 311 - Advance Algebra You can also get the whole mathematics pdf/ebook here All mathematics ebook 2. Engineering in Society MEC311 - Engineers in Society , Engineers in Society II 3. Electrical Measurement and Instrumentation EEC311 - Electrical Measurement and signal processing ,  Principles of Electrical Measurement 4.  Electrical Material Science EEC315 -  Electrical Material Science 5. Electrical Circuit Theory EEC 313 -  Electrical circuit theory revised second edition(John Bird)

Surge Protector Installation Best Approach

  A surge protector, also known as a surge suppressor or surge diverter, is a device designed to protect electrical and electronic devices from power surges or spikes or lightning. A power surge is a sudden increase in voltage that can occur due to lightning strikes, power outages, or electrical faults. These voltage spikes can cause damage to sensitive electronic equipment such as computers, televisions, and audio equipment. A surge protector works by diverting excess voltage away from the protected device and safely grounding it. It contains a metal oxide varistor (MOV) or a gas discharge tube (GDT) that absorbs the excess voltage and directs it to the grounding wire. Surge protectors come in different forms, including power strips, plug-in surge protectors, and whole-house surge protectors.   Problems Caused by Transient (Surge) 1. Damage to electrical/electronics equipment.  2. Disruption to the logic levels of the device rather than physical damage, resulting in data loss, softwar